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Abstract: The objective of this study was to assess the ability of a quantitative software-aided approach to improve 
the diagnostic accuracy of 18F FDG PET for Alzheimer’s dementia over visual analysis alone. Twenty normal subjects 
(M:F-12:8; mean age 80.6 years) and twenty mild AD subjects (M:F-12:8; mean age 70.6 years) with 18F FDG PET 
scans were obtained from the ADNI database. Three blinded readers interpreted these PET images first using a 
visual qualitative approach and then using a quantitative software-aided approach. Images were classified on two 
five-point scales based on normal/abnormal (1-definitely normal; 5-definitely abnormal) and presence of AD (1-defi-
nitely not AD; 5-definitely AD). Diagnostic sensitivity, specificity, and accuracy for both approaches were compared 
based on the aforementioned scales. The sensitivity, specificity, and accuracy for the normal vs. abnormal readings 
of all readers combined were higher when comparing the software-aided vs. visual approach (sensitivity 0.93 vs. 
0.83 P = 0.0466; specificity 0.85 vs. 0.60 P = 0.0005; accuracy 0.89 vs. 0.72 P<0.0001). The specificity and ac-
curacy for absence vs. presence of AD of all readers combined were higher when comparing the software-aided 
vs. visual approach (specificity 0.90 vs. 0.70 P = 0.0008; accuracy 0.81 vs. 0.72 P = 0.0356). Sensitivities of the 
software-aided and visual approaches did not differ significantly (0.72 vs. 0.73 P = 0.74). The quantitative software-
aided approach appears to improve the performance of 18F FDG PET for the diagnosis of mild AD. It may be helpful 
for experienced 18F FDG PET readers analyzing challenging cases.
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Introduction

The prevalence of Alzheimer’s disease (AD) is 
continuously increasing in the United States 
with an expected doubling of the annual num-
ber of incident cases in 2050 [1]. Symptoms  
of the disease include cognitive impairment 
including memory dysfunction [2]. The diagno-
sis is most frequently made clinically based on 
neuropsychological testing, in particular with 
the Mini Mental Status Examination (MMSE) [3, 
4]. However, the MMSE can be of limited value 
in early forms of dementia and mild cognitive 
impairment (MCI) [5, 6]. Imaging in the workup 
of AD is evolving with several neuroimaging 
modalities applied in clinical settings, including 
positron emission tomography (PET), single ph- 
oton emission computed tomography (SPECT), 
magnetic resonance imaging (MRI) and com-

puted tomography (CT). PET with attenuation 
correction by low dose CT has been found to  
be a highly useful imaging modality for the diag-
nosis of neurodegenerative disorders [7]. 
According to the Center for Medicare and 
Medicaid Services, PET imaging with 2-deoxy-2-
[18(F)]fluoro-D-glucose (FDG) is considered an 
important step in the workup of a patient diag-
nosed with dementia who is suffering from  
at least 6 months of documented cognitive 
decline, has previously been evaluated for alter-
native degenerative diseases, and met the cri-
teria for both AD and/or frontotemporal dem- 
entia (FTD) [8]. FDG as a radiotracer is reflect-
ing glucose metabolism [9] and thus enables 
depiction of reduced activity of glucose metab-
olism in affected brain areas of AD [10, 11]. 
Pattern of abnormalities of cerebral glucose 
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metabolism in AD can involve the parietotem-
poral, posterior cingulate, precuneus and fron-
tal cortex [2, 12-18]. Sparing of the sensorimo-
tor cortex, subcortical gray matter, visual 
cortex, basal ganglia, cerebellum, and thalami 
is a distinguishing feature of AD as opposed to 
other forms of dementia [8]. FDG-PET revealed 
sensitivity above 90% and specificity above 
70% for the diagnosis of AD while correctly 
identifying the presence of AD in 88% of 
patients when compared with histopathology 
[17]. A recently published meta-analysis pooled 
data from 27 studies and determined a sensi-
tivity of 90% and a specificity of 89% for the 
diagnosis of AD against non-demented healthy 
controls with FDG-PET [19]. Interpretation of 
FDG-PET in the setting AD is usually in a manu-
al approach using visual qualitative reading. A 
manual approach can be prone to interpreta-
tion errors and strongly depends on the experi-
ence and training of the reading physician [20]. 
FDG-PET with a quantitative component using 
software-aided analysis may increase diagnos-
tic performance for AD detection. Previous 
studies for quantitative AD diagnosis with FDG-
PET applied voxel-based procedures with age-
adjusted t-statistics, statistical parametric ma- 
pping approaches and standardized stereo- 
tactic surface projections (SSPs) [21-23]. The 
purpose of this study was to determine whe- 
ther a commercial quantitative software tool, 
MIMneuroTM (MIM Software Inc. Cleveland, OH) 
could improve the diagnosis of AD compared to 
qualitative visual analysis alone for three expe-
rienced board certified radiology and nuclear 
medicine physicians (25 years, 12 years and 6 
years of experience).

Subjects and methods

ADNI (Alzheimer’s disease neuroimaging initia-
tive)

Forty subjects with FDG PET brain scans were 
obtained from the ADNI database (adni.loni.

usc.edu). All subjects included within the ADNI 
database gave written informed consent to  
participate in the study. The ADNI was launch- 
ed in 2003 as a public-private partnership, led 
by Principal Investigator Michael W. Weiner, 
MD. The primary goal of ADNI has been to test 
whether serial magnetic resonance imaging 
(MRI), positron emission tomography (PET), 
other biological markers, and clinical and neu-
ropsychological assessment can be combined 
to measure the progression of mild cognitive 
impairment (MCI) and early Alzheimer’s disease 
(AD). For up-to-date information, see www.adni-
info.org. In addition to FDG PET scans, all ADNI 
subjects received baseline comprehensive 
neuropsychological evaluation, laboratory tests 
and blood samples for genetic analysis, and 
structural MR exams [24].

Subject selection

Twenty normal controls and twenty AD subjects 
were chosen from the ADNI database. The nor-
mal control patients (12 male, 8 female) ranged 
in age from 71 to 94, with a mean age ± SD of 
80.6±7.2 y, and fulfilled all eligibility criteria for 
enrollment as an ADNI normal control including 
a Clinical Dementia Rating (CDR) score of 0, a 
MMSE score between 24-30, and no diagnosis 
of depression, MCI, or dementia. Normal con-
trols included in this study also had a negative 
PET amyloid scan and did not progress to MCI 
or AD within 24 month follow up. The mild AD 
subjects (12 male, 8 female) used in this study 
had CDR scores of 0.5 or 1, MMSE scores 
between 20 and 26, and met the National 
Institute of Neurological and Communicative 
Disorders and Stroke and the Alzheimer’s 
Disease and Related Disorders Association 
(NINCDS/ADRDA) criteria for probable AD, and 
had a positive amyloid scan. AD patients ranged 
in age from 55 to 89 years, with a mean age ± 
SD of 70.6±10.4 years. Baseline characteris-
tics of healthy controls and AD patients are 

Table 1. Baseline characteristics of the healthy controls and Alzheimer disease patients from the 
ADNI database (https://ida.loni.usc.edu)

Healthy controls Alzheimer disease patients
Number of subjects 20 20
Male (%) 12 (60) 12 (60)
Mean age ± standard deviation 80.6±7.2* 70.6±10.4*
Mini-Mental State Examination (MMSE) ± standard deviation 29±1.4 22.8±1.9
Clinical Dementia Rating (CDR) 0 0.5/1
*Mean age differed significantly between healthy controls and Alzheimer disease patients (P = 0.005).
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shown in Table 1. All subjects were clinically fol-
lowed and imaged at 6, 12, and 24 months.

18F-FDG PET imaging data 

All FDG PET scans were acquired between 
2007 and 2011 under common standardized 
FDG PET acquisition protocols consistent with 
ADNI standards. Data were corrected for scat-
ter and radiation-attenuation using transmis-

sion scans for systems having rod sources, or 
by CT scan for sites with a PET/CT scanner. 
Data were reconstructed using measured-
attenuation correction and image reconstruc-
tion algorithms specified for each scanner 
(http://adni.loni.usc.edu). Raw PET data in 
DICOM format were first uploaded to the 
University of Michigan for pre-processing to 
correct for differences across PET scanners 
used at various ADNI sites. During preprocess-

Figure 1. Representative examples of FDG-PET in a patient with Alzheimer’s disease (A) and in a healthy control (B) 
from the ADNI database (https://ida.loni.usc.edu). 
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ing, first each of the five-minute emission 
frames acquired in every FDG scan were co-
registered and then averaged to the first frame. 
The co-registered, averaged image was then 
reoriented to a common spatial orientation, 
such that the anterior-posterior axis of the sub-
ject ran parallel to the anterior commissure-
posterior commissure (AC-PC) line, and interpo-
lated onto a uniform 60×160×96 voxel image 
grid, with 1.5 mm cubic voxels (http://adni.loni.
usc.edu/methods/pet-analysis/pre-process-
ing). Finally a subject-specific mask was applied 
for intensity normalization (where average in 
the mask was one). Further details regarding 
ADNI image acquisition and processing are 
described in Jagust et al [24].

Visual image interpretation

Pre-processed ADNI images (co-registered, av- 
eraged, standardized image and voxel size) 
were downloaded from the ADNI LONI databa- 
se in DICOM format (https://ida.loni.usc.edu). 
Three observers who were blinded to the diag-
noses were selected as participants in this 
study. All three readers were highly experienced 
US board certified nuclear medicine and radiol-
ogy physicians (25 years, 12 years and 6 years 
of experience). Before image interpretation, a 
30-minute training session was provided to 
review the criteria for defining typical metabolic 
abnormalities for AD on FDG PET brain scans. 

The following criteria were used for a visually 
positive diagnosis of AD: hypometabolism in 
the temporal and parietal lobes, the posterior 
cingulate gyrus and the precuneus, with rela-
tive sparing of the sensorimotor and primary 
visual cortices and cerebellum. The striatum 
and thalamus are also spared. Readers were 
reminded that in early stages the hypometabo-
lism might appear asymmetric, however, as the 
disease progresses it will often become bilat-
eral. Bilateral involvement is more common, 
however, there may still be some of the earlier 
asymmetry present. With more advanced dis-
ease frontal lobe deficits can be seen as well. 
Occasionally there may be frontal dominant dis-
ease where frontal deficits are more prominent 
than the parietotemporal deficits [12, 25-30].

Prior to actual interpretation sessions, FDG PET 
images of a healthy subject and an AD subject 
were shown in a standard three plane display 
as sample cases to highlight key differences 
between normal and AD brain scans (Figure 1). 
After the training session, PET images were 
presented to readers for visual interpretation in 
a conventional three plane display (axial, sagit-
tal, and coronal) with a standard gray scale 
over the course of several weeks. Order of nor-
mal and AD images were randomized and pre-
sented by a non-observer who transcribed 
patient rankings into an excel spreadsheet. 
FDG PET images were visually classified using 

Table 2. Sensitivity, specificity and accuracy for normal (1, 2 on the applied scale) vs. abnormal read-
ings (5 on the applied scale) when comparing software-aided vs. manual readings in all three readers 
and averaged over all readers
 Sensitivity Specificity Accuracy
Reader Auto Manual p-value Auto Manual p-value Auto Manual p-value
1 0.90 0.75 0.85 0.45 0.875 0.600
2 1.00 0.80 0.95 0.75 0.975 0.775
3 0.90 0.95  0.75 0.60 0.825 0.775  
Combined 0.933 0.833 0.047 0.85 0.60 0.0005 0.892 0.717 <0.0001

Table 3. Sensitivity, specificity and accuracy for absence (1, 2 on the applied scale) vs. presence (3, 
4, 5 on the applied scale) of Alzheimer’s disease when comparing software-aided vs. manual read-
ings in all three readers and averaged over all readers

Sensitivity Specificity Accuracy
Reader Auto Manual p-value Auto Manual p-value Auto Manual p-value
1 0.45 0.65 0.95 0.50 0.70 0.575
2 0.85 0.70 0.95 0.85 0.90 0.775
3 0.85 0.85  0.80 0.75  0.825 0.80  
Combined 0.717 0.733 0.74 0.90 0.70 0.0008 0.808 0.717 0.0356
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two rating scales: Normal/Abnormal and AD/No 
AD. Each reader rated each case on a scale 
from 1 = definitely normal to 5 = definitely 
abnormal, and on a scale from 1 = definitely not 
AD to 5 = definitely AD. For the normal/abnor-
mal scale, a 1 was considered “definitely nor-
mal”, and a 2 was considered “probably nor-
mal”. A score of 4 or 5 corresponded to 
“probably abnormal” and “definitely abnormal”, 
respectively. For the AD/No AD scale rating, a 1 
was considered “definitely not AD”, and a 2 was 
considered “probably not AD”. A score of 4 or 5 
corresponded to “probably AD” and “definitely 
AD”, respectively. For both rating systems a 
score of 3 was considered equivocal, and 
counted as positive for both scales. For the nor-
mal/abnormal scale this meant a 3 was count-
ed as abnormal, and for the AD/No AD scale 
this meant a 3 counted as positive for presence 
of AD. The number of patients that were 
assigned to each score for Normal/Abnormal 
AD/No AD and can be observed in Table 6. 
Visual analysis was completed first for all sub-
jects prior to beginning the quantitative analy-
sis portion of the study.

Aided image interpretation

Following visual assessment, quantitative anal-
ysis was performed on the same set of 40 FDG 

PET scans. A non-observer presented images 
to the three readers who were again asked to 
rate each case with the additional aid of quan-
tification results generated by MIMneuro. 
Readers rated the images using the same two 
scales used for visual assessment (Normal/
Abnormal and AD/No AD). All FDG PET brains 
were first spatially normalized to a standard 
FDG PET brain template using a 9-parameter 
affine registration followed by a nonlinear land-
mark-based deformation. This registration 
allowed for comparisons to a normal database 
which had also been registered to the temp- 
late. The normal database was comprised of 
43 healthy controls between the ages of 41-80, 
with a mean age ± SD of 63.8±10 y. Both the 
normal comparison set and subject’s brains 
were normalized to the mean activity of the 
whole brain, pons, and cerebellum before com-
parison. Statistical comparisons were made 
between the subject and the normal database 
for each voxel in the brain. Z scores were calcu-
lated from the normalized values for voxel-
based analysis using the following formula: Z = 
[meansubject-meannormals]/SDnormals.

Stereotactic surface projections (SSPs) were 
also utilized, providing an overview of cortical 
FDG uptake. SSPs are obtained by looking for 
the highest activity voxel along a vector perpen-
dicular to the surface of the brain and project-
ing that voxel on to the surface [25]. Statistically 
significant differences were highlighted for all 
of the voxels in the brain on both the multi-pla-
nar reconstructed images and the SSPs. The 
differences were represented as z-scores or 
the number of standard deviations away from 
the mean. Voxels with z-scores <-1.65 were 
highlighted in a cool color scale on the subject’s 
registered brain (Figure 2). A z-score cutoff of 
-1.65 using a one-tailed t-test corresponds to 
statistically significant difference from normal 
at the 0.05 significance level. Processed quan-
titative results displaying voxel Z scores and 
SSPs normalized to each reference region were 
saved into a session, which allowed the soft-
ware to be restored to a given state (including 
display layout and quantitative voxel and SSP 
results) for a consistent presentation to each 
reader. Cases were re-randomized for the sec-
ond time to minimize recall bias and presented 
to readers in the saved session format with the 
processed quantitative results.

Table 4. Area under the ROC curves for 
normal vs. abnormal readings when compar-
ing software-aided vs. manual readings in all 
three readers and averaged over all readers
Reader Auto Manual P-value
1 0.896 0.735
2 0.994 0.821
3 0.895 0.833
Combined 0.978 0.841 0.0154

Table 5. Area under the ROC curves for 
absence vs. presence of Alzheimer’s disease 
when comparing software-aided vs. manual 
readings in all three readers and averaged 
over all readers
Reader Auto Manual P-value
1 0.800 0.626
2 0.956 0.821
3 0.890 0.884
Combined 0.943 0.814 0.0264
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Statistical analysis 

Accuracy of visual and aided readings were 
compared for the Normal/Abnormal scale, and 
also for the AD/No AD scale. Receiver operat- 
ing characteristic (ROC) analysis was performed 
to determine diagnostic accuracy. ROC curves 
were estimated by method (visual, aided) for 
each scale (Normal/Abnormal and AD/No AD) 
for each reader, and using the average rating 
across the three readers. Nonparametric esti-
mates of ROC curve areas were estimated and 
compared between methods using a non-para-
metric approach, implemented in the Proc 
Logistic procedure of SAS version 9.4 (SAS 
Institute, Inc., Cary, NC). A generalized estimat-
ing equations logistic regression model was 
used to compare sensitivity, specificity, and 
accuracy of aided vs. visual methods using 
data from all three readers where readings of 3 
or higher on the 5-point scale were considered 
positive/abnormal, and readings of 1-2 were 
considered negative/normal.

Results

Representative example FDG-PET scans acqu- 
ired from the ADNI database are shown for an 
AD patient and healthy control in Figure 1. 
SSPs with overlaid z-scores for a healthy con-
trol and AD patient using MIMneuro is demon-
strated in Figure 2. The distribution of scores 
for both the visual and software-aided app- 
roaches is listed in Table 6. 

Sensitivity, specificity and accuracy for soft-
ware-aided vs. manual readings

When comparing the normal (1, 2 on the applied 
scale) vs. abnormal readings (3, 4, 5 on the 
applied scale) observed specificity and acc- 
uracy were consistently higher throughout all 
three readers when using the software-aided 

5 on the applied scale) of AD observed specific-
ity and accuracy were consistently higher for 
each of the three readers when using the soft-
ware-aided approach. Observed sensitivity was 
higher in reader 2, equal in reader 3, and was 
lower in reader 1 when using the aided vs. the 
visual approach. When combining the results of 
all readers the specificity and accuracy were 
significantly increased (P = 0.0008 and P = 
0.0356) when using the software-aided app- 
roach vs. visual inspection alone. Sensitivities 
of the software-aided and visual approaches 
did not differ significantly (0.72 vs. 0.73 P = 
0.74). The results are listed in Table 3.

ROC curves for software-aided vs. manual 
readings

For the ROC analyses using combined data 
from all three readers, the area under the ROC 
curve was higher when using software-aided 
vs. visual readings, both for normal vs. abnor-
mal readings (P = 0.0154), and for absence vs. 
presence of AD readings (P = 0.0264). The 
results of each reader and combined are listed 
in Table 4 (normal vs. abnormal readings) and 
Table 5 (absence vs. presence readings of 
Alzheimer’s disease). The ROC curve using the 
average of all three readers along with the ROC 
associated statistics comparing software-aid-
ed vs. visual readings is shown in Figure 3 for 
normal vs. abnormal readings and in Figure 4 
for absence vs. presence readings of AD.

Discussion

In this study, we aimed to show the effect of a 
quantitative software-aided approach for the 
diagnosis of early stage AD with 18F FDG PET. 
The MIMneuro software-aided approach dem-
onstrated an improvement of AD diagnostic 
specificity and accuracy while maintaining simi-
lar sensitivity compared to the qualitative visu-

Table 6. The distribution of scores for both normal/abnor-
mal and presence of AD/absence AD parameters. A rating 
of 3 or higher was considered to be indicative of abnor-
mal/presence of AD

Normal vs. abnormal AD vs. no AD
Reader  

1
Reader  

2
Reader  

3
Reader  

1
Reader  

2
Reader  

3
Rating of 1 13 18 7 34 23 25
Rating of 2 20 20 23 13 22 12
Rating of 3 6 1 6 7 1 6
Rating of 4 12 14 15 10 12 19
Rating of 5 29 27 29 16 22 18

approach and observed sensitivity of 
the software-aided approach was 
higher for two out of three readers. 
When combining the results of all 
readers the sensitivity, specificity and 
accuracy increased when using the 
aided approach vs. the visual app- 
roach. Accuracy, specificity and sen-
sitivity reached significance level for 
all three metrics (P = 0.0466, P = 
0.0005, P<0.0001 respectively). The 
results are listed in Table 2.

When comparing absence (1, 2 on 
the applied scale) vs. presence (3, 4, 
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al approach. Furthermore, the AUC ROC incre- 
ased with statistical significance comparing the 
software-aided approach versus the manual 
assessment for the detection of both, abnor-
mality and AD. 

The subject selection in our study focused on 
patients with mild or questionable AD in the 
early disease stage. We wanted to focus on this 
population subtype for two reasons: 1) early 

diagnosis of AD is important as treatment is 
most effective during early stages of the dis-
ease [31] and 2) early stage AD is more chal-
lenging to diagnose compared to moderate to 
late stage AD [25]. 

Due to the increasing number of therapeutic 
options, the early and accurate diagnosis of AD 
is playing an increasingly important role [32, 

Figure 2. Stereotactic surface projections (SSPs) of a healthy control and Alzheimer’s disease patient. Statistically 
significant areas of hypometabolism are highlighted in blue (z-score <-1.65). Note the pattern of hypometabolism is 
consistent with Alzheimer’s disease in the second row.

Figure 3. ROC curve using the average of all three 
readers along with the ROC associated statistics 
comparing software-aided vs. visual readings for nor-
mal vs. abnormal readings.

Figure 4. ROC curve using the average of all three 
readers along with the ROC associated statistics 
comparing software-aided vs. visual readings for ab-
sence vs. presence of Alzheimer’s disease.
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33] as emphasized by the US Food and Drug 
Administration (FDA) and the European Medi- 
cines Agency (EMA) [34, 35]. The current clini-
cal climate stresses the importance of having 
an effective approach to diagnose AD non-inva-
sively at early stages.

The clinical diagnosis of AD without the aid of 
imaging may be challenging. Depression, apha-
sia, and apraxia can mimic clinical criteria of AD 
[36, 37]. This coupled with the difficulty of dis-
tinguishing normal age related memory loss 
and rapid memory deterioration in early stage 
AD increases the complexity of AD diagnosis 
[38]. 18F FDG PET imaging has made advances 
in enabling the diagnosis of AD in patients with 
confounding mental conditions [39] and has 
shown good accuracy in the discrimination of 
probable AD patients from normal subjects 
(95% sensitivity and 100% specificity using vox-
el-based z-scores and stereotactic surface pro-
jections) [21]. 

The addition of a software aided approach 
alongside qualitative visual interpretation could 
significantly improve the current clinical diag-
nostic performance of early stage AD.

The use of quantitation to improve the diagno-
sis of AD using FDG PET has been studied previ-
ously. One study demonstrated that 3D-SSP 
could improve reader diagnostic accuracy in 
subjects with AD compared to standard trans-
axial section presentation of the FDG PET scan 
[25]. The benefit of 3D-SSP was attributed to 
readers only being presented with the surface 
of the brain, allowing them to interpret less 
information. This study included subjects with 
moderate to severe dementia (CDR 2.0 and 
3.0) in addition to those with milder dementia 
(CDR of 0.5 or 1.0) which were used in our 
study. In another study it was shown that using 
regional cerebral blood flow reduction in poste-
rior cingulate gyri and precunei on voxel-based 
3D-SSP as diagnostic criteria [21] produced a 
diagnostic accuracy of greater than 85% for 
patients with mild AD (CDR score of 0.5) and 
that 3D-SSP was a feasible tool for aiding to the 
visual diagnosis of AD [26]. Contrary to our 
study, the authors used SPECT rather than 18F 
FDG PET. In a study looking at the effect of a 
voxel-based 3D-SSP approach for both begin-
ners and experts over visual analysis alone it 
was found that that 3D-SSP significantly 
improved diagnostic specificity in both begin-

ners (0.26 to 0.63) and experienced readers 
(0.56 to 0.87) without a significant decrease in 
sensitivity (0.83 to 0.82) [40]. This minimal 
decrease in sensitivity from the voxel based 
3D-SSP approach corresponded to the change 
in sensitivity from the software-aided approach 
in our study (0.72 to 0.73 P = 0.74). In addition, 
the use of voxel-based 3D-SSP significantly 
improved the interpretative confidence for all 
readers compared to the visual approach. 

Fully automated quantitative software appro- 
aches without reader input have shown im- 
provements in terms of AD diagnostic accur- 
acy compared to beginner readers [41, 42]. 
However, a previous study has shown that an 
automatic diagnostic system relying solely on 
voxel based parametric mapping without read-
er input produced significantly lower AD diag-
nostic sensitivity compared to experienced 
readers [43]. Nevertheless, one benefit of a 
software-aided approach is its ability to improve 
reader specificity, especially for readers who 
may overemphasize physiological minimal 
changes that are part of inter-subject variability 
[43]. Our study has shown that voxel based 
quantitative adjunct software improves early 
AD diagnostic specificity and accuracy while 
maintaining similar sensitivity for experienced 
readers, emphasizing the importance of a soft-
ware aided approach with final assessment by 
reading physicians as opposed to a fully auto-
matic approach. 

Our study has several limitations including the 
confounding effect of senile brain atrophy, 
which mimics glucose hypometabolism seen in 
AD [44]. The minimal amount of metabolic and 
perfusion changes seen in both mild stages of 
late-onset AD and senile dementia may influ-
ence interpretation of PET images, especially 
for elderly patients [45-47]. The training ses-
sion provided to readers before PET interpreta-
tion was aimed to reduce the confounding 
effect of brain atrophy, a challenge encoun-
tered during study readouts. In addition, our 
study included a limited sample of subjects, as 
only 20 subjects with mild AD were included 
along with 20 normal control subjects. Hence, 
the direct scope of our results and conclusion 
was limited to patients that exhibit mild, border-
line AD. Nevertheless, the changes in diagnos-
tic specificity and accuracy were statistically 
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significant despite the small sample size. 
Despite this limitation, the statistically signifi-
cant results suggest that our software aided 
approach would be successful in aiding diagno-
sis of both moderate and severe AD. As AD pro-
gresses in severity the physiologic manifesta-
tions and hallmark metabolic changes become 
more pronounced. We hypothesize that soft-
ware aided evaluation would continue to dem-
onstrate statistically significant increases in 
diagnostic capability, though as the physiologic 
derangements become more pronounced the 
magnitude of effect may decrease compared  
to the values we achieved with mild AD. 
Furthermore, the diagnosis of AD for the study 
subjects was determined by clinical criteria 
rather than the gold standard histopathology. 
This may impact the diagnostic accuracy of 
both approaches in the study, as the true pres-
ence of AD in each subject was not determined. 
However, the long clinical follow-up and imaging 
at 6, 12, and 24 months strengthened our 
assessment of the clinical diagnosis as well as 
positive amyloid scans for the AD subjects and 
negative amyloid scans for the controls. In addi-
tion, reader 1 (our most experienced reader) 
had a twenty percent increase in sensitivity of 
presence/absence of AD when switching from 
software-aided to manual approach. The accu-
racy, sensitivity, and specificity of reader 1 with 
quantitative software guidance for normal/
abnormal reading were very high (0.875, 0.90, 
and 0.85, respectively). Hence, it may be that 
this increase in sensitivity of AD diagnosis was 
due to the reader attributing atrophy related 
changes seen on quantitative analysis to 
causes other than AD. Furthermore, our study 
utilized two parameters, normal/abnormal and 
presence of AD/absence of AD, to evaluate 
each 18F FDG PET scan. This was done to 
address that the ADNI database has classified 
subjects based on clinical evaluation-which has 
been shown to potentially include subjects with 
glucose metabolism patterns more consistent 
with FTD or Lewy Body Dementia (LBD) as AD 
[48]. Although our subject selection criteria 
require a positive amyloid scan for mild AD sub-
jects, LBD subjects may also present with a 
positive amyloid scan. Therefore, we used an 
additional parameter of normal vs. abnormal 
pattern of metabolism to include scans that 
indicate an abnormal pattern of metabolism 
without expressing a pattern consistent with 
AD. Finally, our study considered a score 3 on a 

5 point scale to be indicative of an abnormal 
finding/presence of AD. This is an equivocal 
and subjective decision as it may also be inter-
preted as normal/absence of AD or an indeter-
minate outcome. However, scores of 3 out of 5 
represented less than 10% of total reads and 
thus did not play a role in determining the 
results of our study. 

For future studies, additional quantitative met-
rics could be used including region-based anal-
ysis to assess characteristic regional hypome-
tabolism, which could further aid diagnostic 
performance. Furthermore, a comparison of 
diagnostic effectiveness of voxel SSP and vo- 
xel transaxial section quantitative approaches 
could further highlight the effect of 3D projec-
tions of the brain surface, as previously men-
tioned [25]. Finally, our study indicated that 
quantitative software-aided improved diagnos-
tic accuracy of abnormality and AD in compari-
son to the manual approach. At the same time, 
it would be of interest to further investigate the 
potential diagnostic benefit of a dual-read 
approach that incorporates a preliminary man-
ual read followed by a software-aided diag- 
nosis. 

Conclusion

The quantitative software-aided approach app- 
ears to improve the performance of 18F FDG 
PET for the diagnosis of mild AD. The software-
aided approach improves the diagnostic accu-
racy and specificity of mild AD while maintain-
ing a similar level of sensitivity. Quantitative 
voxel based software may be helpful for experi-
enced 18F FDG PET readers analyzing early 
onset AD.
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